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Substituting Eq. (4) into Eq. (3), one obtains Martino's
equation for the slip regime :

X = [Xcon + (M/Re^)(Xfm)]/[l + (5)

Figures 1-4 show how Martino's equation [Eq. (5)] com-
pares with experimental data. The free molecule aerody-
namic coefficients used in Eq. (5) were obtained from Blick.5
Figure 1 shows a comparison between Martino's equation and
the method of Lukasiewicz et al.,6 which is essentially a com-
bination of Bertram's8 viscous interaction skin friction cor-
rection and Li and Nagamatsu's9 induced pressure correction
modified by the Mangier transformation.

In the transition regime, the Knudsen number given by
Eq. (4) is probably not the best one to use. If one assumes
that the characteristic length is proportional to the shock-
detachment thickness and the mean free path evaluated
behind the shock, then the Knudsen number can be defined as

If the stagnation temperature is low, then Xp is insensitive to
temperature, and Eq. (6) would reduce to

Kn = (7)

/3, defined here to be the "Martino number/' is simply a
numerical factor that fits the Martino equation [Eq. (3)] as
close as possible to the experimental data, Experimental
drag data from Bloxsom and Rhodes10 were correlated by
Martino's equation [Eq. (3)], along with Eq. (6), in Fig. 5.
Each shape in Fig. 5 had a different Martino number. It
was found that the Martino numbers could be correlated by
the following equation:

= exp[3.36 - 4.26 (CDcJ/(CDfm)] (8)

It is not known at this time whether the drag Martino
number given by Eq. (8) is applicable to other aerodynamic
coefficients. If it is, then one can simply substitute the con-
tinuum to free molecule ratio of the coefficient into Eq. (8) in
place of the drag coefficient ratio. However, further experi-
mental data on coefficients (other than drag coefficients) will
have to be obtained before the validity of his method can be
checked.
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Flapping Propulsion Wake Analysis

IKVING MICHELSON*
Illinois Institute of Technology, Chicago, III.

AWING, oscillating normal to its direction of flight, ex-
periences a propulsive force that can be evaluated from

its wake characteristics. A classic wake formula is adapted
to relate thrust force to the flapping frequency and forward
speed, disclosing important distinctive features of unsteady
propulsion. It is shown that a portion of the thrust remains
finite as forward speed tends to zero. Aside from its interest
for natural and low-speed flight, the result is applicable in
such domains as underwater propulsion, by reason of the
fact that the thrust mechanism is independent of normal
(i.e., lift) force.

Unsteady wing propulsion, once termed Katzmayr effect,
furnishes a specific physical representation as well as a use-
ful terminology; the propulsor will be henceforth referred
to as a wing, although the discussion applies equally well
to various vortex-shedding configurations. A variety of
whig and flap oscillation modes are known which approach
ideal mechanical efficiency, and, in all cases, a thick wake is
formed which consists of the flow region bounded by two
staggered rows of oppositely directed vorticity. Except
for the fact that the vortex sense is reversed (hence, also
the direction of the proper vortex motion), the vortex pat-
tern is identical to the vortex street of Benard and Karman.
The thrust force is thus given directly by a slight modifica-
tion of Karman's formula :

'
where F is the vortex strength, V is the forward speed, and
h/l is the ratio of street width to stream wise vortex spacing
in either row (see, e.g., Ref. 1). The latter ratio being a
known constant, it is convenient to regard the parameter I
as a measure of wing oscillation amplitude.

The circulation F can be replaced by the cyclic frequency
/ of wing oscillation by noting that this is the ratio of speed
V + UT of vortex relative to wing divided by spacing I:

f=(V + UT)/l

The motion UT of the vortex relative to the freestream is
known from vortex dynamics as

UT =

so that

2(2)!/2 I

1
2(2) */2 IV (2)

Substitution for F in (1) gives the thrust dependence on
frequency and forward speed :

T = - y) + - (fi -
(10

Although both terms on the right side of (!') include the
familiar velocity-squared terms, the second term is also seen
to contain a contribution to the thrust, which is independent
of forward speed. This feature is the principal reason for the
importance of oscillating wings in low-speed flight tech-
nology. Thrust being independent of lift, moreover, it ap-
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pears that customary unfavorable low-speed induced drag
limitations can be ameliorated by these means.

With regard to flapping frequency, it is clear from (!') that
any value in excess of V/l leads to positive thrust, numerical
coefficients of both terms on the right side being positive.
At low forward speed, therefore, / may be arbitrarily small,
the limit of static thrust (V = 0) corresponding to thrust
proportional to square of frequency. It is also found that
no value of flapping frequency below V/l leads to positive
thrust, regardless of speed V.

The contrast with steady-flow force phenomena is further
clarified by interpreting separately the two terms on the
right side of (1). The first of these, despite the striking
formal resemblance to the Kutta-Joukowsky steady lift
formula, exhibits a completely different character in the
present case. Instead of circulation proportional to speed,
as in the steady airfoil theory, Eq. (2) shows that F is
proportional to frequency in the limit of low speeds, so that
the thrust contribution represented by the term in question
vanishes only as the first power of V. At higher speeds this
term approaches the T7-square dependence as in steady flow.
The second term, containing a part independent of speed
V, therefore dominates the force effects at low speeds. This
term has no counterpart in steady lifting flows.
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Transcendental Approximation for
Laminar Boundary Layers

PETER D. RICHARDSON*
Brown University, Providence, R. I.

IN the fields of boundary-layer theory and unsteady thermal
conduction, there is considerable use for profile methods.1-2

These methods are applied to the solution of problems where
a function is known to exist, usually in a semi-infinite space,
which is known to have its greatest variation in magnitude
close to one of the boundaries. Usually it is known that the
function is monotonic also. The profile methods that are
commonly used at present are approximations in two ways:
first the outer boundary condition is brought from infinity to
a finite distance from the inner surface, and then the profile is
approximated by the use of a polynomial. The profile is then
required to satisfy some integral condition. Since the region
over which the function is approximated is finite, Weierstrass'
theorem can be invoked to protect the use of the polynomial.
However, it would seem that this theorem could be too strong
for what is required. Furthermore, the degree of closeness
of a low-order polynomial to the true function is very small,
and this can adversely affect computations of hydrodynamic
stability.

There seems to be some merit in exploring the possibility
of finding simple, transcendental, approximate profiles that
could be used in such integral methods. In order to obtain
some hint of a suitable profile, it is useful to examine available
numerical solutions for a typical problem, the incompressible
boundary-layer flow over a wedge, i.e., the Falkner-Skan-
Hartree problem. The exponential function is an elementary
transcendent, and since the profiles resemble "decay" curves
it is natural to examine the local logarithmic decrement. This

is displayed in Fig. 1, in which 77 is the dimensionless space
similarity parameter, / is the dimensionless stream function,
and ft is the wedge parameter; /3 > 0 corresponds to acceler-
ated flows. From the figure it is seen that there is a consider-
able indication of linearity of the local logarithmic decrement;
the profile converges with increasing strength to its outer
boundary condition. The linearity is particularly noticeable
for ft > 0 and remains a reasonable approximation for ft < 0.
Accordingly, a profile function can be written

pro?? = exp[— exp(a + — expa]

such that pro?? = 1 at 97 = 0, pro?? ->• 0 as rj -> oo; and where
the function is monotonic, provided that a and 6 are real and
b is positive. For severe cases with ft < 0, it might be possible
to use inner and outer expansions of this linear type, or,
alternatively, to use an argument (a + 677 + cif).

Computations for the wedge-flow laminar boundary layer
have been performed using the profile function already given
to obtain both velocity profiles and minimum critical Reynolds
numbers as functions of the wedge parameter ft. The profile
function contains two parameters that are functions of ft,
and, consequently, it is necessary to use two simultaneous

Fig. 1 Local loga-
rithmic decrement
in the wedge-flow

boundary layer.
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equations (the integral momentum and energy equations) to
determine them. It was found that the integrals involved
could be reduced quite readily to the exponential integral,
which is extensively tabulated. Comparison of this profile
function with the exact solution for both wall shear and
minimum critical Reynolds number is excellent, except for
values of ft close to that for separation. For values of ft >
—0.08, the shear stress is within 0.3% of Hartree's values, and
the minimum critical Reynolds number is within 3% of
Tetervin's values,3 which are based on Hartree's profiles.
Details of the computations are available elsewhere.4
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